Computational form-finding methods for fabric structures
نویسندگان
چکیده
منابع مشابه
A Computational Framework for Interactive Form Finding of Textile Hybrid Structures through Dynamic Topology Control
Textile Hybrid Structures refer to the coupling of tensile formand bendingactive components into a stiffer construct. Several computational frameworks built upon the Dynamic Relaxation method have been developed for interactive explorations of material and geometric properties during form finding. However, efforts are still required when addressing dynamic alterations of topology without comple...
متن کاملA Marching Procedure for Form-finding for Tensegrity Structures
We give an algorithm for solving the form-finding problem, that is, for finding stable placements of a given tensegrity structure. The method starts with a known stable placement and alters edge lengths in a way that preserves the equilibrium equations. We then characterize the manifold to which classical tensegrity systems belong, which gives insight into the form-finding process. After descri...
متن کاملFinding and Fabric Forming
Renewed interest and recently expanding research of ‘fabric forming’ as a means of producing concrete (or rammed earth) structures has established its benefits in physically manifesting complex curvatures, achieving good surface quality, ease of transport of form-work materials (Cauberg et al., 2009), producing sculptural forms of variable crosssection and buckling resistant forms (West and Ara...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولComputational Theory and Methods for Finding Multiple Critical Points
Let H be a Hilbert space and J ∈ C(H, ). Denote δJ its Frechet derivative and J ′ its gradient. The objective of this research is to develop computational theory and methods for finding multiple critical points, i.e., solutions to the Euler-Lagrange equation J (u) = 0. A critical point u is nondegenerate if J (u) is invertible. Otherwise u is degenerate. The first candidates for a critical poin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics
سال: 2008
ISSN: 1755-0777,1755-0785
DOI: 10.1680/eacm.2008.161.3.139